Covariance Tapering for Likelihood Based Estimation in Large Spatial Datasets
نویسندگان
چکیده
Maximum likelihood is an attractive method of estimating covariance parameters in spatial models based on Gaussian processes. However, calculating the likelihood can be computationally infeasible for large datasets, requiring O(n3) calculations for a dataset with n observations. This article proposes the method of covariance tapering to approximate the likelihood in this setting. In this approach, covariance matrices are “tapered,” or multiplied element-wise by a sparse correlation matrix. The resulting matrices can then be manipulated using efficient sparse matrix algorithms. We propose two approximations to the Gaussian likelihood using tapering. One simply replaces the model covariance with a tapered version; the other is motivated by the theory of unbiased estimating equations. Focusing on the particular case of the Matérn class of covariance functions, we give conditions under which estimators maximizing the tapering approximations are, like the maximum likelihood estimator, strongly consistent. Moreover, we show in a simulation study that the tapering estimators can have sampling densities quite similar to that of the maximum likelihood estimate, even when the degree of tapering is severe. We illustrate the accuracy and computational gains of the tapering methods in an analysis of yearly total precipitation anomalies at weather stations in the United States.
منابع مشابه
Spectral methods to approximate the likelihood for irregularly spaced spatial data
Likelihood approaches for large irregularly spaced spatial datasets are often very difficult, if not infeasible, to use due to computational limitations. Even when we can assume normality, exact calculations of the likelihood for a Gaussian spatial process observed at n locations requires O(n) operations. We present a version of Whittle’s approximation to the Gaussian log likelihood for spatial...
متن کاملA full-scale approximation of covariance functions for large spatial data sets
Gaussian process models have been widely used in spatial statistics but face tremendous computational challenges for very large data sets. The model fitting and spatial prediction of such models typically require O(n) operations for a data set of size n. Various approximations of the covariance functions have been introduced to reduce the computational cost. However, most existing approximation...
متن کاملEstimation and prediction of a class of convolution-based spatial nonstationary models for large spatial data
In this paper we address two issues common to the analysis of large spatial datasets. One is the modeling of non-stationarity, and the other is the computational challenges in doing likelihood based estimation and kriging prediction. We model the spatial process as a convolution of independent Gaussian processes, with the spatially varying kernel function given by the modified Bessel functions....
متن کاملCovariance Tapering in Spatial Statistics
In the analysis of spatial data, the inverse of the covariance matrix needs to be calculated. For example, the inverse is needed for best linear unbiased prediction or kriging, and is repeatedly calculated in the maximum likelihood estimation or the Bayesian inferences. Since the spatial sample size can be quite large, operations on the large covariance matrix can be a numerical challenge if no...
متن کاملA Resampling-Based Stochastic Approximation Method for Analysis of Large Geostatistical Data
The Gaussian geostatistical model has been widely used in modeling of spatial data. However, it is challenging to computationally implement this method because it requires the inversion of a large covariance matrix, particularly when there is a large number of observations. This article proposes a resampling-based stochastic approximation method to address this challenge. At each iteration of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005